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USE OF CONSTRAINED FITS TO IMPROVE  
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ABSTRACT

The Hall B Physics Division at Thomas Jefferson National Accelerator Facility (JLab) uses the CEBAF Large Acceptance 
Spectrometer (CLAS) and offline techniques to identify reactions by detecting all outgoing particles but one; this last 
one is identified by the missing mass of the reaction.  For our purposes, we specifically examined the reaction e  p 
→ e’ K+ Λ(1405), where Λ(1405) → Σ- π+ and Σ- → (n) π-.  Our analysis requires that there is good resolution on the 
missing mass to minimize background and we achieve a better resolution if a formula is used in which one variable 
is constrained to the accepted value; for the aforementioned reaction, this would be the neutron mass.  We proved 
this by using two different methods of calculating the reaction’s Σ- mass, either using the experimental neutron mass 
or the known neutron mass.  For both methods, we plotted histograms of the calculations, as well as deriving the 
propagated error equations.  From our methods and analysis, we conclude that there is a smaller experimental error 
on the Σ- mass which uses the accepted neutron mass, rather than the experimentally determined neutron mass.  In 
general, this is a technique that can be applied to other physics analyses and shows that a fit constrained by external 
information yields a better result than an unconstrained fit.

INTRODUCTION

Thomas Jefferson National Accelerator Facility (JLab) 
in Newport News, Virginia conducts scattering experiments 
to understand the structure of the sub-nuclear world.  Each 
experimental hall at JLab is equipped with spectrometers to study 
a wide variety of areas pertaining to particle physics.  Hall B uses a 
large acceptance spectrometer called CLAS, the acronym for CEBAF 
Large Acceptance Spectrometer.  The main difference between CLAS 
and the other spectrometers at JLab is that CLAS’s solid angle is 4π 
radians, about 2π steradians, and much larger than the solid angles 
of the other spectrometers.  The advantage of a larger solid angle 
is that multi-particle final states typical of reactions, where excited  
 

mesons and baryons are produced, are more easily seen [1].  Such 
observations and studies are the focus of Hall B’s experiments.  

CLAS is a magnetic spectrometer; its magnet is comprised of 
six superconducting coils arranged azimuthally around the electron 
beamline.  The magnetic field inside CLAS is calculated directly 
from the current flow in the coils.  This design is ideal for good 
momentum resolution over a large solid angle in covering large areas 
of charged particles in polarized-target experiments.  Electronics 
provide CLAS with its trigger system and data acquisition (DAQ) 
capabilities.  The detectors used in CLAS are arranged circularly 
around the beamline in successive layers, each of which plays a role 
in tracking a particle’s path [1]. 
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The main use of CLAS is for measuring cross sections for 
several strange final states; for this project, we studied the specific 
reaction  e p → e’ K+  Λ(1405), where Λ(1405) → Σ- π+ and Σ - → 
(n) π-.  The parentheses around the neutron symbol indicate that 
the neutron is not detected directly, whereas the e’, K+, π+ and π- 4-
momenta are detected and their energies computed.  Detection of 
hyperons in similar reactions is done by means of the missing mass 
of the reaction, which increases our statistics and ensures that our 
acceptance is smooth and easily calculable.  In addition, there exists 
background to the missing mass, which is a common experimental 
situation, so the goal is to eliminate as much of the background as 
possible.  Graphically, we want to make the missing mass peak as 
narrow as possible. 

One way to improve the resolution on the missing mass is 
to use a constrained calculation, where the missing energy and 
momentum of an intermediate state are constrained as per the known 
missing mass from the Particle Data Group’s (PDG) tables.  In this 
calculation, there are two methods used: the first uses the missing 
momentum and missing energy from the event as the momentum 
and energy of the neutron; the second uses the event’s missing 
momentum, but uses the accepted value of the neutron’s mass instead 
of the event’s missing energy [2]. In using the accepted value for the 
neutron’s mass, we place a mass constraint on the data, thus using 
our prior knowledge of the neutron’s accepted mass.  

The motivation for using successive mass constraints is based on 
eliminating as many background signals as possible and narrowing 
down the amount of data that fits all the cut requirements. Any 
signals that do not fulfill all the constraints are cut out of the sample, 
whereas signals that meet the prerequisites are kept. Therefore, a 
narrower peak width will have less background contamination than 
a wider peak width [2]. 

For this reason, our error analysis sought to prove that more 
constraints on the data will ultimately generate smaller error 
than data that does not have as many or no constraints in effect. 
Specifically, we focused on the calculation of the missing neutron 

mass and the invariant nπ- mass resulting from Λ(1405)’s decay, 
although this analysis can apply to any physics analysis.  In order 
to prove our conjecture, we decided to analyze the missing neutron 
mass, the invariant nπ- mass without constraining the neutron mass 
and the invariant nπ- mass after using a neutron mass constraint, 
both graphically and deriving the propagated error equations.

METHODS

The first step in finding the invariant nπ- mass is to make a cut 
on the identification of the neutron. To do this, we calculate the 
missing mass of the reaction from:

M2 = E2 - P2        (1)
where M is the missing mass of the reaction, E is the missing 

energy and P is the missing momentum.
Next, we create a plot of this missing mass to determine what 

the reaction’s missing particle is. As can be seen in Figure 1 [3], the 
peak at about 0.94 GeV is statistically identified as a neutron, so we 
place a cut at 0.915 and 0.98 for further analysis.

Since we want to exclusively study the nπ- in this project, we 
define the invariant nπ- mass in terms of 4-momenta as: 

|MΣ-|
2 = |P

→

Σ-|
2 = (P

→

- + P
→

n  )
2    (2)

where we introduce the shorthand for the Σ-, π- and neutron 
4-momenta.

In turn, the 4-momentum is defined as:

P
→ 

= [E,P] = (E,Px,Py,Pz)                (3)

where P is the 3-momentum vector and Px, Py and Pz are the x-, 
y- and z- components of the 3-momentum vector respectively.

The most important point to remember is as follows; the 4-
momentum of the neutron candidate, called so because it is only 
statistically identified as a neutron, can be calculated two ways, with 
and without the mass constraint. These calculations are done only 
for events with e’, K+, π+ and π- detected and the event’s missing 
mass approximately that of a neutron.  For our purposes, we found 
the error in terms of the 4-momentum of each detected particle. We 
used histograms that were previously made of the missing neutron 
mass and the two invariant nπ- masses for the reaction [3]. 

We can also explicitly derive the propagated error equations 
for each method and compare in order to determine which error is 
smaller, starting with the 4-momentum conservation equation of 
the situation: 

P
→

Σ-
 = P

→

- + P
→

n      (4) 

where we have the 4-momenta of Σ-, π- and the neutron. 
Next, we square the equation, which gives us:

                    
P
→

Σ-
2 = (P

→

- + P
→

n  )
2 = P

→

-
2 + 2P

→

-P
→

n+ P
→

n
2       (5)

Therefore, the general error propagation equation is:

Missing Particle Mass

Figure 1.  Missing particle mass of the reaction, with the neutron cut 
marked at 0.915 and 0.98.
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where we have the sum of the squares of all the partial 
derivatives. 

Given the following unconstrained 4-momentum:

P
→

n,unconstr 
 = P

→

e-- P
→

K+- P
→

π++ P
→

π-
  

we can substitute into Equation 4:
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Therefore, squaring Equation 8 will yield M2
Σ- :
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The error on the unconstrained M2
Σ- will be the partial 

derivatives with respect to each momentum term, multiplied by the 
error on it.  These partial derivatives are:
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Hence, the total error on the unconstrained invariant nπ- mass 
is:

δ(M2
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where:

MΣ-, unconstr = ( P
→

e-- P
→

K+- P
→

π+ )

The uncertainty in M2
Σ- when the neutron mass is constrained 

to its known value is given by:

M2
Σ-, constr = (Mn + P

→

π- )
2 

M2
Σ-, constr = M2

n + 2MnP
→

π- 
 + P

→2
π-               (12)

Therefore, the partial derivative gives the following:
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Hence, the total error is:
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where:
MΣ-, constr = ( Mn + P

→

π-  )

RESULTS

Figure 2 illustrates the invariant nπ- mass without the neutron 
mass constraint applied, marking the width of the peak between 
two dotted lines and Figure 3 shows the invariant nπ- mass with the 
neutron mass constraint applied.

Equation 11 from above is the error on the unconstrained 
invariant nπ- mass:
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where:

MΣ-, unconstr = ( P
→

e-- P
→

K+- P
→

π+ )

and Equation 14 is the error on the constrained invariant 
nπ- mass:
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DISCUSSION & CONCLUSIONS

In analyzing the aforementioned results, it is important to 
remember the purpose of the project. Intuitively, we know that using 
the neutron mass’s known value, rather than the experimental value, 
should give us less error. 

Generally, the accepted rule of a physics analysis is to use 
all of the information known in order to make a better decision 
on which direction to proceed in the analysis. Sometimes, this 
may not help, because it is possible for data to conflict with one 
another, thus making it difficult to decide which data is correct. 
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Nonetheless, all the prior knowledge is used, since knowing more 
information about a particular reaction should help to decrease the 
amount of error. 

In comparing Figure 2 and Figure 3, it appears that the 
constrained invariant mass yields a narrower peak width than the 
unconstrained invariant mass.  In comparing the background of 
each, it is seen that the constrained invariant nπ- has a smaller 
background, hence it has a better experimental resolution than the 
unconstrained case.  

Although we can show this graphically, it is necessary to prove 
it mathematically by propagating the error for each situation; our 
derivations show that the smaller error is indeed on the constrained 

invariant mass.  This is a specific example of a general finding that 
using external data improves the final results.

ACKNOWLEDGEMENTS

First of all, I want to acknowledge my mentor, Dr. M.D. 
Mestayer, and Λ(1405) data analysis group for overseeing and 
assisting me in my project this summer.  Next, I want to thank the 
Gettysburg College physics department for their continued support 
and advice in aiding my development towards a career in physics.

I also want to thank my supervisors in the Science Education 
department and all the other SULI/PST interns for making this 
summer a truly enjoyable experience.

Finally, I want to thank the Office of Science, United States 
Department of Energy (DOE) and Jefferson Lab for providing the 
opportunity to work at Jefferson Lab for another summer. I certainly 
enjoyed the academic and social atmosphere that the DOE’s SULI 
program creates for its interns and I look forward to continuing along 
the path created by the DOE and Jefferson Lab program en route to 
my future graduate studies and professional livelihood. 

REFERENCES

[1]  E.S. Smith, “The CEBAF Large Acceptance Spectrometer 
(CLAS),” Nuclear Instruments and Methods in Physics 
Research, vol. 503, section A, pp. 514-553, 2003.

[2]  M.D. Mestayer (private communication), 2004.

[3]  Daniel S. Carman, “Λ(1405)/Σ(1385) Analysis – CLAS e1c 
4 GeV Data Sets”, Thomas Jefferson National Accelerator 
Facility, Newport News, 2003.

Invariant Σ- Mass, constrained

Figure 3. Peak width (1.179 < width < 1.235) of constrained 

invariant nπ- mass (between the dotted lines).

 , unconstrainedInvariant Σ- Mass  

Figure 2.  Peak width (1.179 < width < 1.235) of unconstrained 

invariant nπ- mass (between the dotted lines).


