
48 U.S. Department of Energy Journal of Undergraduate Research

http://www.scied.science.doe.gov

ADAPTIVELY IMPROVING LONG DISTANCE NETWORK
TRANSFERS WITH LOGISTICS

DAVID LABISSONIERE AND KENNETH ROCHE

ABSTRACT

Long distance data movement is an essential activity of modern computing. However, the congestion control mechanisms
in the Internet’s Transmission Control Protocol (TCP) severely limit the bandwidth achieved by long distance data
transfers. The throughput of such transfers can be improved by applying the logistical technique of breaking a single
long distance transfer into multiple shorter transfers. This technique can result in signifi cantly improved throughput
while still respecting the shared nature of the Internet by not attempting to circumvent the TCP congestion controls.
This technique has been incorporated into an algorithm which attempts to dynamically schedule transfers for optimal
throughput. The algorithm couples graph techniques with real-time latency and bandwidth measurements to discover
the best path and adaptively respond to network dynamics. The algorithm shows improvements in speed and fl exibility
over standard data transfer methods such as FTP. Specifi c transfers tests performed between Oak Ridge National
Laboratory and a destination in Sunnyvale, CA show throughput increases by a factor of two.

INTRODUCTION

Tremendous increases in computational and storage capacity
have made it possible to create, process, and store massive datasets.
Scientifi c, commercial, and personal computing applications have all
scaled to take advantage of these abilities. However, one important
aspect of computing that has failed to improve proportionally is
the performance of network data movement. Despite signifi cant
bandwidth improvements on commercial and academic Internet
links, the throughput actually achieved during data transfers
employing the standard Transmission Control Protocol (TCP)
stack is often a small fraction of the capacity available on the link.
Primarily because of the design of the TCP congestion controls, this
disparity between available and achieved bandwidth is especially
apparent in long distance transfers. Th e congestion controls cause
such transfers to very slowly reach their maximum throughput and
in fact may altogether prevent them from doing so.

Many network researchers have proposed schemes for improving
throughput by circumventing [1] or replacing [2] the TCP
congestion controls or the protocol itself [3]. Th ese approaches have
shown signifi cant improvements but have been slow to be adopted,
in part because of the extent of the existing TCP infrastructure as
well as concerns that such approaches will exacerbate congestion
on the Internet.

Th is paper describes a method that improves long distance
transfer throughput by inserting intermediary buff ers into the
transfer path. Th is method works within the framework of the
TCP congestion controls without attempting to circumvent them.
Additionally, an algorithm which automatically and adaptively
applies this method is presented. Finally, an implementation of this
algorithm is described, accompanied by empirical data regarding its
performance. Th e data demonstrates that the throughput of long
distance TCP transfers can be signifi cantly improved by applying
this technique — in this case by nearly a factor of two.

Logistical Transfer Improvements

Long distance transfers are characterized by a large round-trip
time (RTT), the total time required to send a packet from source
to destination and receive an acknowledgment at the source. Th e
maximal throughput achieved by such a transfer is determined
in large part by the size of the TCP congestion window, the
amount of data allowed to be sent without being acknowledged
by the recipient. TCP employs a policy of additive increase and
multiplicative decrease for the window size [4]: the window starts
out small and slowly increases as the transfer proceeds, up to a
system-defi ned maximum size. If any error occurs, however, the
window size is dramatically decreased. In this way, TCP attempts
to determine the maximum available throughput while avoiding

David LaBissoniere is currently an intern at the Oak Ridge National
Laboratory, in the Cyber Security and Information Infrastructure group.

His work explores applications of textual content analysis techniques. In previous
work at the laboratory, he developed algorithms which employ network logistics
to improve long distance data transfer performance. Mr. LaBissoniere recently
graduated from East Tennessee State University with a B.S. degree in computer
science. He plans to continue on to graduate school in 2008.

Kenneth Roche is a staff scientist in the Future Technologies Group of
the Computer Science and Mathematics Division of the Oak Ridge

National Laboratory.

U.S. Department of Energy Journal of Undergraduate Research 49

http://www.scied.science.doe.gov

congestion. Th e optimal congestion window size is large for transfers
on high-bandwidth network paths with large RTTs. As a result, TCP
takes a signifi cant amount of time to reach this optimal window size
and, in fact, may never do so if errors occur.

Th ese performance limitations can be reduced by employing
the methodologies of logistical networking [5]. By breaking long
distance transfers into a pipelined series of shorter transfers, each with
a RTT smaller than that of the direct source-to-destination transfer,
throughput can be improved. Th is pipelining is accomplished
by using intermediate application-layer storage depots [6] located
between the source and destination to buff er data for the transfer.
Data is moved in small blocks from source to destination, through
each depot. Th is technique is somewhat counterintuitive due to
the additional overhead introduced by the intermediate depots.
Additionally, the sum of the RTTs between all intermediary
points will generally be larger than the direct RTT. Despite these
detriments, breaking up long distance transfers into multiple
segments can yield signifi cant performance improvement.

Th e throughput improvements obtained by this method are
due to several factors. First, because the RTT on any edge along
the transfer path is smaller than the end-to-end RTT, the TCP
congestion control mechanisms will more quickly discover the
maximum available bandwidth along each edge. Second, when
errors do occur in the transfer and TCP reactively reduces the
window size, the optimal window size will be recovered more quickly
because it does not have as far to grow. Additionally, when an error
requires a packet retransmission, the packet can be retransmitted
from the nearest depot instead of the source, reducing bandwidth
consumption and retransmission time. Finally, the congestion
window size is often ultimately limited by hard system thresholds
which are signifi cantly smaller than the optimal window size for
long distance transfers. Th ese maximum window sizes are imposed
by the system to prevent TCP buff ers from consuming too much
memory. Breaking long transfers into several shorter transfers yields
closer-to-optimal window sizes, even if they are still limited by the
system maximum. Further discussion of the improvements garnered
by this method can be found in [7].

While other techniques for throughput improvement involve
circumventing [1] or even replacing [2] the TCP congestion controls,
this technique works within the TCP framework to produce a
benefi t. However, though not addressed in this paper, preliminary
work done by the authors has shown that coupling the logistical
technique with other strategies such as employing parallel TCP
streams or alternate congestion control mechanisms will often
achieve even further throughput increases.

Adaptive Path Scheduling

In order for this pipelining technique to yield a throughput
benefi t, the throughput achieved on each section of the total transfer
must exceed the throughput on the direct end-to-end transfer. Th is
limitation requires that prior knowledge of the network be available
for useful application of the method: the throughput available
between the source, destination, and each possible intermediary
depot must be known. Th is stipulation is unrealistic and limits the

usefulness of this technique alone, especially due to the dynamic
nature of networks.

To generalize the use of the method, an algorithm was developed
that attempts to dynamically determine critical information about
the network and to use it to schedule the optimal path from source to
destination, through as many intermediaries as needed to maximize
throughput. When no information about the state of the network
is available, the algorithm performs a cold start in which it explores
the network and determines the throughput available on each link.
Otherwise, the algorithm performs a warm start and is able to
determine the optimal path more quickly.

Th e algorithm models the network as a weighted, directed graph
and uses graph analysis techniques to determine the best path from
source to destination. In the graph, the source, destination, and
each possible intermediate depot are represented as vertices and are
connected to each other by edges. Each edge is weighted by the
throughput available between these two points in the network. A
valid path in the algorithm is a cycle-free sequence of connected
vertices starting from the source and ending at the destination.
Th e predicted throughput for a valid path is the minimum value of
all the edge weights in the path. Th us, the optimal path is the one
which has the largest minimum weight.

Th e algorithm employs a path construction routine which
determines the best path from source to destination, based on
currently available information. Th is routine is a derivative of
Dijkstra’s shortest-path algorithm [8], diff ering primarily in that
it seeks the path with the largest minimum weight instead of
the smallest aggregate weight. Th is routine has a computational
complexity of O(V2), where V is the total number of vertices. Pseudo-
code for this routine is included in the appendix.

Because the state of the network is dynamic, the algorithm
frequently re-evaluates its knowledge and adjusts the transfer path
if necessary. Th is process enables the algorithm to handle failures of
intermediary depots and networking equipment as well as reductions
of throughput due to increased traffi c or congestion. Th e algorithm
loops until the transfer completes, monitoring the throughput and
maintaining the edge weights on the graph. Frequently, the algorithm
calls the shortest-path routine and compares the result to the current
path. If they diff er, the current path is stopped and data fl ow is
moved to the new path.

When an edge weight is unknown, the algorithm treats that
value as infi nity, thereby encouraging the shortest-path routine to
produce a path containing that edge. In this way, measurements
of throughput on edges are only done in the process of the actual
transfer. In a cold start, nothing is known about the network and
thus all edges have infi nite weights. As a result, the algorithm will
frequently change the path early in the lifetime of the transfer, but
will quickly discover all relevant edge weights and settle on the best
path across the network.

Th e algorithm’s computational complexity depends on the
extent of the transfer. Th e algorithm loops throughout the life
of the transfer and repeatedly calls the path construction routine.
Each iteration of the loop has a complexity of O(V2), where V is the
number of depots (vertices) in the network. Th e number of times
this routine is called varies based on the size of the transfer and
the achieved transfer rate. In a small transfer, the loop may only

50 U.S. Department of Energy Journal of Undergraduate Research

http://www.scied.science.doe.gov

be executed once. In a theoretical infi nite stream of data, the loop
would be executed infi nitely. As a result, the best general complexity
analysis of the algorithm that can be provided is O(kV2) where k is
the number of times the loop is executed.

It is perhaps more useful to consider the number of path
attempts necessary for the algorithm to settle onto the best available
path and how this complexity scales with the number of available
depots. In a completely cold start, between V and V2 path attempts
must be made in order to fi nd the best path through the vertices.
Because each path attempt corresponds with one iteration of the
main algorithm loop described above, the complexity for fi nding the
best path in a cold start is O(V2 * V2) = O(V4). In a warm start, the
algorithm uses prior information about the network to determine
the best path in fewer attempts. If this information is accurate,
the best path can be found in only one attempt. However, if this
information is entirely inaccurate, the algorithm will behave like a
cold start and can require as many as V2 attempts to determine the
best path. As a result, the worst-case complexity of a warm start is
the same as that of a cold start: O(V4).

Because of the transient nature of networks, the throughput
on an edge may not be accurately measured and thus may not be
considered in a path when it could provide a benefi t. To reduce this
problem, the algorithm employs a policy of aging edge weights.
Each edge weight is aware of the time at which its measurement
was taken. When this time passes a threshold, the weight is scaled
up by a predefi ned percentage and its timestamp is updated. In
this way, mis-measured edges are given another chance. To prevent
sudden dramatic path changes from being introduced by the aging
mechanisms, only a fi xed maximum number of weights are aged per
iteration of the algorithm.

IMPLEMENTATION AND RESULTS

Th e algorithm implementation is multi-threaded and utilizes a
third-party package, the Internet Backplane Protocol (IBP) [6][9].
IBP uses a client/server architecture to provide anonymous, time-
limited, storage allocations in memory or on the disk of remote
servers. Th e algorithm uses these allocations as buff ers for data in the
network. Th e logistical transfer improvement is achieved by moving
small blocks of data from the source to the fi rst intermediary depot
in the path while other threads of transfer simultaneously move data
between depots along every other edge of the path. Th is process
eff ectively forms a pipeline.

To facilitate testing of the algorithm and methodologies, IBP
depots were deployed directly on the Abilene Internet2 backbone
[10]. Data transfers were performed from a system at the Oak
Ridge National Laboratory to a depot located at the Sunnyvale,
CA Abilene site. Th e network route over Abilene between these two
hosts passes near by to several of the intermediary depots. A pool
of six possible intermediary depots was employed, four of which are
located, topologically speaking, between ORNL and Sunnyvale (in
Atlanta, Indianapolis, Kansas City, and Denver) and are thus poised
to provide a throughput benefi t. Th e other two depots (in New York
City and Washington D.C.) are located in the opposite direction and
serve to demonstrate the algorithm’s ability to reject intermediary
points which do not provide a throughput benefi t. Th ree types of

transfers were repeatedly performed: standard FTP, logistical transfers
with no prior network knowledge (cold start), and logistical transfers
with prior knowledge of the network (warm start). Th e change in
throughput over time for these transfers is plotted in Figure 1. Th e
cold start transfers waver as the algorithm tries diff erent paths across
the network while attempting to determine the best one. Table 1 lists
these paths for a single execution instance of the algorithm. Th ese
transfers even dip below the FTP throughput line at several points,
when a path is being attempted which includes intermediaries not
topologically between the source and destination—in our tests,
New York and Washington D.C. Th e algorithm, however, quickly
builds an accurate representation of the network and determines
the best path across it.

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0 50 100 150 200 250 300 350 400 450

Th
ro

ug
hp

ut
 (M

bi
t/

s)

Elapsed Time (s)

256MB Transfers from ORNL to Sunnyvale, CA

Standard FTP
Adaptive Logistical (cold start)

Adaptive Logistical (warm start)

Figure 1. Repeated transfers from ORNL to Sunnyvale show that
though initially the cold start transfer has signifi cant fl uctuation as it
searches for the best path, it is ultimately able to achieve nearly double
the performance of standard FTP. The warm start is able to achieve this
improvement almost immediately.

Path
Throughput

(Mbit/s)
ORNL → Sunnyvale 2.63
ORNL → Indianapolis → Sunnyvale 3.58
ORNL → Denver → Sunnyvale 3.75
ORNL → Atlanta → Sunnyvale 2.55
ORNL → Kansas City → Sunnyvale 3.23
ORNL → Washington → Sunnyvale 1.66
ORNL → New York City → Sunnyvale 1.74
ORNL → Atlanta → Denver → Sunnyvale 4.30
ORNL → Atlanta → Indianapolis → Denver → Sunnyvale 4.94
ORNL → Atlanta → Kansas City → Denver → Sunnyvale 4.40
ORNL → Atlanta → Washington → Denver → Sunnyvale 2.72
ORNL → Atlanta → New York City → Denver → Sunnyvale 2.44
ORNL → Atlanta → Indianapolis →Kansas City → Denver →
Sunnyvale

5.99

Table 1. Order of path attempts in cold start transfer from ORNL to
Sunnyvale, CA.

U.S. Department of Energy Journal of Undergraduate Research 51

http://www.scied.science.doe.gov

In the example, the best path from ORNL to Sunnyvale includes
four sequential intermediary depots, located in Atlanta, Indianapolis,
Kansas City, and Denver. Th e throughputs achieved on each edge
of the path are listed in Table 2. Over time, transfers over this path
achieve a throughput very close to the smallest edge value, in this
case the 5.99Mbit/s edge between Denver and Sunnyvale. Note,
however, that the best path for a particular source and destination
may vary from transfer to transfer and even within the lifetime of a
single transfer. If a depot or network link fails or experiences heavy
load, the algorithm may choose a diff erent path which at that time
off ers better throughput.

When information about the network is already known, the
algorithm’s warm start mode immediately achieves and maintains
a throughput that is, at worst, the same as a direct transfer such as
FTP. In our example (Figure 1), the warm start transfers quickly
reach nearly double the throughput achieved by FTP. However, this
improvement is contingent on the accuracy of the initial network
information. Considerable incorrect information may result in
a warm start taking as long as a cold start to determine the best
path.

CONCLUSIONS AND FUTURE WORK

Th is work demonstrates that a signifi cant transfer performance
benefi t can be achieved by employing logistical techniques. Th ese
techniques work with the TCP congestion control mechanisms and
do not attempt to circumvent them. As a result, the techniques
respect the shared nature of the Internet while still improving
throughput. Additionally, even without prior knowledge of the
network, the adaptive algorithm determines and maintains the best
logistical path to a destination.

Although significant throughput improvements were
demonstrated, the actual bandwidth rates achieved were much
lower than the theoretical maximum bandwidth available on the
network links. Th is diff erence is believed to be a result of limited
hardware availability and control. Specifi cally, many of the systems
used were highly loaded and had restrictively low maximum TCP
window sizes. Despite these setbacks, this work has shown notable
performance improvements which demonstrate the utility of the
logistical technique. Furthermore, related work [11] has shown
that the technique still yields a benefi t when employed in higher-
bandwidth scenarios.

Th e algorithm also has limitations that this work did not address.
First, the algorithm could conceivably starve a transfer on a highly
irregular network through which an optimal path cannot be found.
Th is issue can be easily addressed in the algorithm’s implementation
and must be addressed for any production application. Additionally,
there is some question as to how the algorithm would behave if
many instantiations of it were executed simultaneously on the same
network of depots. Although this scenario has not been adequately
tested, preliminary results suggest that the algorithm will scale as
the number of processes grows, up to the point at which the depots
are completely congested.

As well as addressing the above issues, further work on this
project could involve algorithmic improvements to better predict
and model network bandwidths. Additionally, a generalized library
could be built that abstracts the logistical techniques further away
from the user. Finally, these techniques could be demonstrated on
higher-bandwidth links and as the data transfer mechanism for a
large-scale grid application.

Edge
Throughput

(Mbit/s)
ORNL → Atlanta 17.44
Atlanta → Indianapolis 11.76
Indianapolis → Kansas City 11.52
Kansas City → Denver 11.01
Denver → Sunnyvale 5.99

Table 2. Throughputs on each edge of the best path from ORNL to
Sunnyvale over the Abilene network. In the long run, this path is able to
achieve the minimum of these values, or 5.99Mbit/s.

52 U.S. Department of Energy Journal of Undergraduate Research

http://www.scied.science.doe.gov

ACKNOWLEDGMENTS

This research was primarily conducted at the Oak Ridge
National Laboratory in the Future Technologies group of the
Computer Science and Mathematics division. Foremost thanks
go to Kenneth Roche who supported and supervised the project
and devoted countless hours of his time. Also, Micah Beck
provided invaluable insight and resources. Additional thanks go to
Christopher Wallace, Phillip Pfeiff er, Philip Roth, Jeff rey Vetter, the
DOE Offi ce of Science, and the SULI program.

REFERENCES

[1] H. Sivakumar, S. Bailey, R. Grossman. “PSockets: the case
for application-level network striping for data intensive
applications using high speed wide area networks,” in Proc.
of the 2000 ACM/IEEE Conference on Supercomputing,
2000.

[2] S. Floyd. “High-Speed TCP,” IETF RFC3649, 2003.

[3] Q. Wu, N. Rao. “Protocol for high-speed data transport over
dedicated channels,” Proc. of Third International Workshop
on Protocols for Long-Distance Networks,2005.

[4] M. Allman, V. Paxson, W. Stevens. “TCP Congestion
Control,” IETF RFC 2581, 1999.

[5] M. Beck, T. Moore, J. Plank, and M. Swany. “Logistical
Networking: Sharing More Than the Wires,” in Proc. of 2nd
Annual Workshop on Active Middleware Services, 2001.

[6] J. Plank, A. Bassi, M. Beck, T. Moore, M. Swany, and R
Wolski. “Managing Data Storage in the Network,” in IEEE
Internet Computing, 2001.

[7] M. Swany and R. Wolski. “Data Logistics in Networking
Computing: The Logistical Session Layer,” in IEEE Network
Computing and Applications, 2001.

[8] E. Dijkstra. “A Note on Two Problems in Connexion with
Graphs,” Numerische Mathematik1,1959.

[9] Internet Backplane Protocol. http://loci.cs.utk.edu/ibp/.

[10] Abilene. http://abilene.internet2.edu/.

[11] M. Swany. “Improving Throughput for Grid Applications
with Network Logistics,” in Proc. of the 2004 ACM/IEEE
Conference on Supercomputing, 2004.

U.S. Department of Energy Journal of Undergraduate Research 53

http://www.scied.science.doe.gov

Appendix – Algorithms

A. Path construction routine

This routine is a derivative of Dijkstra's shortest path algorithm. It determines the shortest

path across the network, based on current information.

get_best_path(Vertex src, Vertex dest)
{
 /* Declarations */
 known[num_vertices];
 bandwidth[num_vertices];
 previous[num_vertices];

 /* Initializations */
 For each vertex {
 known[vertex] = False;
 bandwidth[vertex] = 0;
 previous[vertex] = -1;
 }
 bandwidth[src] = Infinity;

 while ((vertex = largest unknown bandwidth vertex) != -1) {
 known[vertex] = True;

 For each unknown adjacent vertex {
 bw = minimum(bandwidth[vertex], Edge[vertex][adjacent]);
 if (bw > bandwidth[adjacent]) {
 bandwidth[adjacent] = bw;
 previous[adjacent] = vertex;
 }
 }
 }
 /* the best path is now stored in the previous[] array and can be
 read recursively starting at previous[dest]
 */
}

54 U.S. Department of Energy Journal of Undergraduate Research

http://www.scied.science.doe.gov

B. Main algorithm routine

This routine manages the transfer threads and edge weights.

perform_transfer(Vertex src, Vertex dest)
{
 Path cur_path = NULL;
 Path new_path;

 /* Loop until transfer is completed. */
 while (transfer is not complete)
 {
 /* Get the best path based on current information
 Complexity: O(V2)
 */
 new_path = get_best_path(src, dest);

 if (new_path != cur_path)
 {

 /* Stop transfer threads on current path, if any
 Complexity: O(1)
 */
 stop_transfer(cur_path);

 /* Begin transfer threads on new path
 Complexity: O(1)
 */
 start_transfer(new_path);

 cur_path = new_path;
 }

 /* Wait a predefined time to allow transfer to ramp up */
 sleep(t);

 /* Update graph weights with current bandwidth measurements
 Complexity: O(V)
 */
 update_weights();

 /* Age a fixed maximum number of old weights to give mis-measured
 edges another chance
 Complexity: O(1)
 */
 age_weights();
 }
}

