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ADAPTIVELY IMPROVING LONG DISTANCE NETWORK 
TRANSFERS WITH LOGISTICS

DAVID LABISSONIERE AND KENNETH ROCHE

ABSTRACT

Long distance data movement is an essential activity of modern computing.  However, the congestion control mechanisms 
in the Internet’s Transmission Control Protocol (TCP) severely limit the bandwidth achieved by long distance data 
transfers.  The throughput of such transfers can be improved by applying the logistical technique of breaking a single 
long distance transfer into multiple shorter transfers.  This technique can result in signifi cantly improved throughput 
while still respecting the shared nature of the Internet by not attempting to circumvent the TCP congestion controls.  
This technique has been incorporated into an algorithm which attempts to dynamically schedule transfers for optimal 
throughput.  The algorithm couples graph techniques with real-time latency and bandwidth measurements to discover 
the best path and adaptively respond to network dynamics.  The algorithm shows improvements in speed and fl exibility 
over standard data transfer methods such as FTP. Specifi c transfers tests performed between Oak Ridge National 
Laboratory and a destination in Sunnyvale, CA show throughput increases by a factor of two. 

INTRODUCTION 

Tremendous increases in computational and storage capacity 
have made it possible to create, process, and store massive datasets.  
Scientifi c, commercial, and personal computing applications have all 
scaled to take advantage of these abilities.  However, one important 
aspect of computing that has failed to improve proportionally is 
the performance of network data movement.  Despite signifi cant 
bandwidth improvements on commercial and academic Internet 
links, the throughput actually achieved during data transfers 
employing the standard Transmission Control Protocol (TCP) 
stack is often a small fraction of the capacity available on the link.  
Primarily because of the design of the TCP congestion controls, this 
disparity between available and achieved bandwidth is especially 
apparent in long distance transfers. Th e congestion controls cause 
such transfers to very slowly reach their maximum throughput and 
in fact may altogether prevent them from doing so. 

Many network researchers have proposed schemes for improving 
throughput by circumventing [1] or replacing [2] the TCP 
congestion controls or the protocol itself [3]. Th ese approaches have 
shown signifi cant improvements but have been slow to be adopted, 
in part because of the extent of the existing TCP infrastructure as 
well as concerns that such approaches will exacerbate congestion 
on the Internet. 

Th is paper describes a method that improves long distance 
transfer throughput by inserting intermediary buff ers into the 
transfer path.  Th is method works within the framework of the 
TCP congestion controls without attempting to circumvent them.  
Additionally, an algorithm which automatically and adaptively 
applies this method is presented.  Finally, an implementation of this 
algorithm is described, accompanied by empirical data regarding its 
performance.  Th e data demonstrates that the throughput of long 
distance TCP transfers can be signifi cantly improved by applying 
this technique — in this case by nearly a factor of two. 

Logistical Transfer Improvements

Long distance transfers are characterized by a large round-trip 
time (RTT), the total time required to send a packet from source 
to destination and receive an acknowledgment at the source.  Th e 
maximal throughput achieved by such a transfer is determined 
in large part by the size of the TCP congestion window, the 
amount of data allowed to be sent without being acknowledged 
by the recipient.  TCP employs a policy of additive increase and 
multiplicative decrease for the window size [4]:  the window starts 
out small and slowly increases as the transfer proceeds, up to a 
system-defi ned maximum size.  If any error occurs, however, the 
window size is dramatically decreased.  In this way, TCP attempts 
to determine the maximum available throughput while avoiding 
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congestion.  Th e optimal congestion window size is large for transfers 
on high-bandwidth network paths with large RTTs.  As a result, TCP 
takes a signifi cant amount of time to reach this optimal window size 
and, in fact, may never do so if errors occur. 

Th ese performance limitations can be reduced by employing 
the methodologies of logistical networking [5].  By breaking long 
distance transfers into a pipelined series of shorter transfers, each with 
a RTT smaller than that of the direct source-to-destination transfer, 
throughput can be improved.  Th is pipelining is accomplished 
by using intermediate application-layer storage depots [6] located 
between the source and destination to buff er data for the transfer.  
Data is moved in small blocks from source to destination, through 
each depot.  Th is technique is somewhat counterintuitive due to 
the additional overhead introduced by the intermediate depots.  
Additionally, the sum of the RTTs between all intermediary 
points will generally be larger than the direct RTT.  Despite these 
detriments, breaking up long distance transfers into multiple 
segments can yield signifi cant performance improvement. 

Th e throughput improvements obtained by this method are 
due to several factors. First, because the RTT on any edge along 
the transfer path is smaller than the end-to-end RTT, the TCP 
congestion control mechanisms will more quickly discover the 
maximum available bandwidth along each edge.  Second, when 
errors do occur in the transfer and TCP reactively reduces the 
window size, the optimal window size will be recovered more quickly 
because it does not have as far to grow.  Additionally, when an error 
requires a packet retransmission, the packet can be retransmitted 
from the nearest depot instead of the source, reducing bandwidth 
consumption and retransmission time.  Finally, the congestion 
window size is often ultimately limited by hard system thresholds 
which are signifi cantly smaller than the optimal window size for 
long distance transfers.  Th ese  maximum window sizes are imposed 
by the system to prevent TCP buff ers from consuming too much 
memory.  Breaking long transfers into several shorter transfers yields 
closer-to-optimal window sizes, even if they are still limited by the 
system maximum.  Further discussion of the improvements garnered 
by this method can be found in [7]. 

While other techniques for throughput improvement involve 
circumventing [1] or even replacing [2] the TCP congestion controls, 
this technique works within the TCP framework to produce a 
benefi t.  However, though not addressed in this paper, preliminary 
work done by the authors has shown that coupling the logistical 
technique with other strategies such as employing parallel TCP 
streams or alternate congestion control mechanisms will often 
achieve even further throughput increases. 

Adaptive Path Scheduling 

In order for this pipelining technique to yield a throughput 
benefi t, the throughput achieved on each section of the total transfer 
must exceed the throughput on the direct end-to-end transfer.  Th is 
limitation requires that prior knowledge of the network be available 
for useful application of the method: the throughput available 
between the source, destination, and each possible intermediary 
depot must be known. Th is stipulation is unrealistic and limits the 

usefulness of this technique alone, especially due to the dynamic 
nature of networks. 

To generalize the use of the method, an algorithm was developed 
that attempts to dynamically determine critical information about 
the network and to use it to schedule the optimal path from source to 
destination, through as many intermediaries as needed to maximize 
throughput.  When no information about the state of the network 
is available, the algorithm performs a cold start in which it explores 
the network and determines the throughput available on each link.  
Otherwise, the algorithm performs a warm start and is able to 
determine the optimal path more quickly. 

Th e algorithm models the network as a weighted, directed graph 
and uses graph analysis techniques to determine the best path from 
source to destination.  In the graph, the source, destination, and 
each possible intermediate depot are represented as vertices and are 
connected to each other by edges.  Each edge is weighted by the 
throughput available between these two points in the network.  A 
valid path in the algorithm is a cycle-free sequence of connected 
vertices starting from the source and ending at the destination.  
Th e predicted throughput for a valid path is the minimum value of 
all the edge weights in the path.  Th us, the optimal path is the one 
which has the largest minimum weight. 

Th e algorithm employs a path construction routine which 
determines the best path from source to destination, based on 
currently available information.  Th is routine is a derivative of 
Dijkstra’s shortest-path algorithm [8], diff ering primarily in that 
it seeks the path with the largest minimum weight instead of 
the smallest aggregate weight.  Th is routine has a computational 
complexity of O(V2), where V is the total number of vertices.  Pseudo-
code for this routine is included in the appendix. 

Because the state of the network is dynamic, the algorithm 
frequently re-evaluates its knowledge and adjusts the transfer path 
if necessary.  Th is process enables the algorithm to handle failures of 
intermediary depots and networking equipment as well as reductions 
of throughput due to increased traffi  c or congestion.  Th e algorithm 
loops until the transfer completes, monitoring the throughput and 
maintaining the edge weights on the graph. Frequently, the algorithm 
calls the shortest-path routine and compares the result to the current 
path.  If they diff er, the current path is stopped and data fl ow is 
moved to the new path. 

When an edge weight is unknown, the algorithm treats that 
value as infi nity, thereby encouraging the shortest-path routine to 
produce a path containing that edge.  In this way, measurements 
of throughput on edges are only done in the process of the actual 
transfer.  In a cold start, nothing is known about the network and 
thus all edges have infi nite weights.  As a result, the algorithm will 
frequently change the path early in the lifetime of the transfer, but 
will quickly discover all relevant edge weights and settle on the best 
path across the network. 

Th e algorithm’s computational complexity depends on the 
extent of the transfer.  Th e algorithm loops throughout the life 
of the transfer and repeatedly calls the path construction routine.  
Each iteration of the loop has a complexity of O(V2), where V is the 
number of depots (vertices) in the network.  Th e number of times 
this routine is called varies based on the size of the transfer and 
the achieved transfer rate.  In a small transfer, the loop may only 
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be executed once.  In a theoretical infi nite stream of data, the loop 
would be executed infi nitely. As a result, the best general complexity 
analysis of the algorithm that can be provided is O(kV2) where k is 
the number of times the loop is executed. 

It is perhaps more useful to consider the number of path 
attempts necessary for the algorithm to settle onto the best available 
path and how this complexity scales with the number of available 
depots.  In a completely cold start, between V and V2 path attempts 
must be made in order to fi nd the best path through the vertices.  
Because each path attempt corresponds with one iteration of the 
main algorithm loop described above, the complexity for fi nding the 
best path in a cold start is O(V2 * V2) = O(V4).  In a warm start, the 
algorithm uses prior information about the network to determine 
the best path in fewer attempts.  If this information is accurate, 
the best path can be found in only one attempt.  However, if this 
information is entirely inaccurate, the algorithm will behave like a 
cold start and can require as many as V2 attempts to determine the 
best path.  As a result, the worst-case complexity of a warm start is 
the same as that of a cold start: O(V4). 

Because of the transient nature of networks, the throughput 
on an edge may not be accurately measured and thus may not be 
considered in a path when it could provide a benefi t. To reduce this 
problem, the algorithm employs a policy of aging edge weights.  
Each edge weight is aware of the time at which its measurement 
was taken.  When this time passes a threshold, the weight is scaled 
up by a predefi ned percentage and its timestamp is updated.  In 
this way, mis-measured edges are given another chance.  To prevent 
sudden dramatic path changes from being introduced by the aging 
mechanisms, only a fi xed maximum number of weights are aged per 
iteration of the algorithm. 

IMPLEMENTATION AND RESULTS 

Th e algorithm implementation is multi-threaded and utilizes a 
third-party package, the Internet Backplane Protocol (IBP) [6][9].  
IBP uses a client/server architecture to provide anonymous, time-
limited, storage allocations in memory or on the disk of remote 
servers.  Th e algorithm uses these allocations as buff ers for data in the 
network.  Th e logistical transfer improvement is achieved by moving 
small blocks of data from the source to the fi rst intermediary depot 
in the path while other threads of transfer simultaneously move data 
between depots along every other edge of the path.  Th is process 
eff ectively forms a pipeline. 

To facilitate testing of the algorithm and methodologies, IBP 
depots were deployed directly on the Abilene Internet2 backbone 
[10].  Data transfers were performed from a system at the Oak 
Ridge National Laboratory to a depot located at the Sunnyvale, 
CA Abilene site. Th e network route over Abilene between these two 
hosts passes near by to several of the intermediary depots.  A pool 
of six possible intermediary depots was employed, four of which are 
located, topologically speaking, between ORNL and Sunnyvale (in 
Atlanta, Indianapolis, Kansas City, and Denver) and are thus poised 
to provide a throughput benefi t.  Th e other two depots (in New York 
City and Washington D.C.) are located in the opposite direction and 
serve to demonstrate the algorithm’s ability to reject intermediary 
points which do not provide a throughput benefi t.  Th ree types of 

transfers were repeatedly performed: standard FTP, logistical transfers 
with no prior network knowledge (cold start), and logistical transfers 
with prior knowledge of the network (warm start).  Th e change in 
throughput over time for these transfers is plotted in Figure 1.  Th e 
cold start transfers waver as the algorithm tries diff erent paths across 
the network while attempting to determine the best one. Table 1 lists 
these paths for a single execution instance of the algorithm.  Th ese 
transfers even dip below the FTP throughput line at several points, 
when a path is being attempted which includes intermediaries not 
topologically between the source and destination—in our tests, 
New York and Washington D.C.  Th e algorithm, however, quickly 
builds an accurate representation of the network and determines 
the best path across it. 
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Figure 1.  Repeated transfers from ORNL to Sunnyvale show that 
though initially the cold start transfer has signifi cant fl uctuation as it 
searches for the best path, it is ultimately able to achieve nearly double 
the performance of standard FTP.  The warm start is able to achieve this 
improvement almost immediately.

Path
Throughput

(Mbit/s)
ORNL → Sunnyvale 2.63
ORNL → Indianapolis → Sunnyvale 3.58
ORNL → Denver → Sunnyvale 3.75
ORNL → Atlanta → Sunnyvale 2.55
ORNL → Kansas City → Sunnyvale 3.23
ORNL → Washington → Sunnyvale 1.66
ORNL → New York City → Sunnyvale 1.74
ORNL → Atlanta → Denver → Sunnyvale 4.30
ORNL → Atlanta → Indianapolis → Denver → Sunnyvale 4.94
ORNL → Atlanta → Kansas City → Denver → Sunnyvale 4.40
ORNL → Atlanta → Washington → Denver → Sunnyvale 2.72
ORNL → Atlanta → New York City → Denver → Sunnyvale 2.44
ORNL → Atlanta → Indianapolis →Kansas City → Denver → 
Sunnyvale

5.99

Table 1.  Order of path attempts in cold start transfer from ORNL to 
Sunnyvale, CA. 
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In the example, the best path from ORNL to Sunnyvale includes 
four sequential intermediary depots, located in Atlanta, Indianapolis, 
Kansas City, and Denver.  Th e throughputs achieved on each edge 
of the path are listed in Table 2.  Over time, transfers over this path 
achieve a throughput very close to the smallest edge value, in this 
case the 5.99Mbit/s edge between Denver and Sunnyvale.  Note, 
however, that the best path for a particular source and destination 
may vary from transfer to transfer and even within the lifetime of a 
single transfer.  If a depot or network link fails or experiences heavy 
load, the algorithm may choose a diff erent path which at that time 
off ers better throughput. 

When information about the network is already known, the 
algorithm’s warm start mode immediately achieves and maintains 
a throughput that is, at worst, the same as a direct transfer such as 
FTP.  In our example (Figure 1), the warm start transfers quickly 
reach nearly double the throughput achieved by FTP.  However, this 
improvement is contingent on the accuracy of the initial network 
information.  Considerable incorrect information may result in 
a warm start taking as long as a cold start to determine the best 
path. 

CONCLUSIONS AND FUTURE WORK 

Th is work demonstrates that a signifi cant transfer performance 
benefi t can be achieved by employing logistical techniques.  Th ese 
techniques work with the TCP congestion control mechanisms and 
do not attempt to circumvent them.  As a result, the techniques 
respect the shared nature of the Internet while still improving 
throughput.  Additionally, even without prior knowledge of the 
network, the adaptive algorithm determines and maintains the best 
logistical path to a destination. 

Although significant throughput improvements were 
demonstrated, the actual bandwidth rates achieved were much 
lower than the theoretical maximum bandwidth available on the 
network links.  Th is diff erence is believed to be a result of limited 
hardware availability and control.  Specifi cally, many of the systems 
used were highly loaded and had restrictively low maximum TCP 
window sizes.  Despite these setbacks, this work has shown notable 
performance improvements which demonstrate the utility of the 
logistical technique. Furthermore, related work [11] has shown 
that the technique still yields a benefi t when employed in higher-
bandwidth scenarios. 

Th e algorithm also has limitations that this work did not address.  
First, the algorithm could conceivably starve a transfer on a highly 
irregular network through which an optimal path cannot be found.  
Th is issue can be easily addressed in the algorithm’s implementation 
and must be addressed for any production application.  Additionally, 
there is some question as to how the algorithm would behave if 
many instantiations of it were executed simultaneously on the same 
network of depots.  Although this scenario has not been adequately 
tested, preliminary results suggest that the algorithm will scale as 
the number of processes grows, up to the point at which the depots 
are completely congested. 

As well as addressing the above issues, further work on this 
project could involve algorithmic improvements to better predict 
and model network bandwidths.  Additionally, a generalized library 
could be built that abstracts the logistical techniques further away 
from the user.  Finally, these techniques could be demonstrated on 
higher-bandwidth links and as the data transfer mechanism for a 
large-scale grid application. 

Edge
Throughput

(Mbit/s)
ORNL → Atlanta 17.44
Atlanta → Indianapolis 11.76
Indianapolis → Kansas City 11.52
Kansas City → Denver 11.01
Denver → Sunnyvale 5.99

Table 2.  Throughputs on each edge of the best path from ORNL to 
Sunnyvale over the Abilene network. In the long run, this path is able to 
achieve the minimum of these values, or 5.99Mbit/s.
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Appendix – Algorithms

A. Path construction routine

This routine is a derivative of Dijkstra's shortest path algorithm. It determines the shortest

path across the network, based on current information.

get_best_path(Vertex src, Vertex dest)
{
  /* Declarations */
  known[num_vertices];
  bandwidth[num_vertices];
  previous[num_vertices];

 /* Initializations */
  For each vertex {
    known[vertex] = False;
    bandwidth[vertex] = 0;
    previous[vertex] = -1;
  }
  bandwidth[src] = Infinity;

  while ( (vertex = largest unknown bandwidth vertex) != -1) {
    known[vertex] = True;

    For each unknown adjacent vertex {
      bw = minimum(bandwidth[vertex], Edge[vertex][adjacent]);
      if (bw > bandwidth[adjacent]) {
        bandwidth[adjacent] = bw;
        previous[adjacent] = vertex;
      }
    }
  }
  /* the best path is now stored in the previous[] array and can be  
      read recursively starting at previous[dest] 
   */
}
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B.  Main algorithm routine

This routine manages the transfer threads and edge weights.

perform_transfer(Vertex src, Vertex dest)
{
  Path cur_path = NULL;
  Path new_path;

  /* Loop until transfer is completed. */
  while (transfer is not complete)
  {
    /* Get the best path based on current information
         Complexity: O(V2)
    */
    new_path = get_best_path(src, dest);
    
    if (new_path != cur_path)
    {
      
      /* Stop transfer threads on current path, if any
           Complexity: O(1) 
      */
      stop_transfer(cur_path);

      /* Begin transfer threads on new path 
           Complexity: O(1) 
      */
      start_transfer(new_path);

      cur_path = new_path;
    }
    
    /* Wait a predefined time to allow transfer to ramp up */
    sleep(t); 

    /* Update graph weights with current bandwidth measurements
         Complexity: O(V) 
    */
    update_weights();

    /* Age a fixed maximum number of old weights to give mis-measured 
         edges another chance 
         Complexity: O(1)
    */
    age_weights();
  }
}




