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Motivation

. Previous computational models
of the MURR system used the
BUGLE-80 energy group . ' . b
structure, a commaon multi-group !
arrangement for epithermal
neutron beams.

. The 2 thermal groups provided by
BUGLE-80 are not detailed
enough to accurately model the
smgle_cr}lstal neutron filters
found in the thermal neutron
beamline.

. More thermal groups are needed .
for a more accurate model of the i /
neutron interactions with the I \
sm?Ie crystals, This will yield a Y,

er model of the irradiating. ~
beam spectrum for more detailed
computational dosimetry results.

. A better multi-group model will
give a better source from discrete
ordinates calculations for an
MCNP model of the beamline.

section.
Bottom: Single crystal elastic scattering cross
section.

Computational Methods

. MCNP: Monte Carlo N-Particle Transport Code
. DORT: Discrete Ordinates Radiation Transport Code
. COMBINE 7.1: A Portable ENDF/B-VII.0 Based Neutron
Spectrum and Cross-Section Generation Program
APESH Free Formal Mdtced flinary Mocroscopic
Microvcopic Croxy Seclony Crozs Secbons esstron Irformation

COMBINE 7.7 DORT

Code and Library Verification

. Needed to check the mathematical accuracy of the codes and generated
multi-group libraries for this application. MCNP5 is used as the
continuous energly reference point for the verification calculations along
with analytical solutions.

. Microscopic cross sections for each of the model material constituents
are generated using COMBINE 7.1 over a 59-group energy structure.
Above 0.414eV, the energy structure closely matches the BUGLE-80
structure. Below 0.414eV there are 20 thermal groups.

. Three media were tested in idealized geometries: water, carbon, Lucite.

Infinite Water Medium Results

*The analytical Therm
solutions along with the
COMBINE 7.1 results use F

Infinite Water Medium
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MURR Reactor Model
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MURR Reactor Model Results

«The BUGLE-80 models do not have thermal Rt GoreSneroyspectm
up-scatter included in the neutron cross

section data.

*The reactor and beamline models use u315
quadrature due to the forward biased nature
of transport down the beam tube.

*BUGLE-80 uses infinite dilute resonance
calculations for all isotopes in the model.

*The COMBINE 7.1 library uses the
homogenized densities for all reactor fuel
cell constituents and averages cross
sections for all materials outside of the core
over the core spectrum. Lo
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MURR Beamline Model Results

Single Crystal Fiered Beamin Model Comparison

Amorphous Fiered Beamine Model Comparison
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P3 Legendre scattering
expansion and a single
spatial mesh pointin a
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MURR Beamline Model

Samgle Location

Beamline
Schematic

*MCNP model (right
image) created with
identical cylindrical
geometry to DORT

beamline model.

*Special MCNP
cross section sets
from KENDF were
used to model the
single crystal filters
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Table: Thermal flux results from the previous
single crystal filtered DORT beam model and
the new COMBINE 7.1 DORT/MCNP model
normalized to the full rated reactor power of
10MW and compared to laboratory thermal flux
measurements of the single crystal filtered B
beam.
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