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OBJECT-ORIENTED ANALYSIS CODE FOR
HALL A VERTICAL DRIFT CHAMBERS

ABSTRACT

The high-resolution spectrometers in Jefferson Lab’s Hall A use vertical drift chambers to
determine charged particle tracks.  The current analysis code for the vertical drift chambers is
difficult to maintain and modify, which has prompted the development of an object-oriented
version, which will be easier to maintain and more able to adapt to changes in the detector
configuration.  However, the object-oriented approach involves using a slightly different algorithm
than ESPACE, which could lead to different results.  In this project, a preliminary version of an
object-oriented analysis program for the vertical drift chambers is created and its results are
compared to the existing software to determine the impacts of the differences in the reconstruction
algorithms.  In addition, the algorithms themselves are compared, and minor differences in
track reconstruction techniques are reported.
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MATERIALS AND METHODS

The code for the object-oriented analyzer was written in C++
and compiled using the GNU C++ compiler (gcc/g++ 2.91) on a
Pentium III 650 MHz computer running RedHat Linux 6.2.  ROOT
was used to view the results of the object-oriented code.  ESPACE
was used to analyze the data as a reference, and Paw++ (CERN,
2001) was used to view the results from ESPACE.  The input data
were obtained as part of the optics study for Hall A experiment
E97-111 in September 2000.  The data analyzed here were taken
with the left arm HRS, using a 9-foil graphite target.  The target
foils are positioned perpendicular to the beam, and the distance
between the foils is 3.988 cm.  A sieve slit with 7x7 holes was used
to block portions of the beam at the spectrometer entrance, which
produces peaks in the angular spectra of the data.

As mentioned earlier, the C++ analyzer uses an object-ori-
ented approach to implement data analysis functions.  One of the
first steps in the design process of the VDC detector code, there-
fore, was to define a set of suitable C++ classes, their features,
public interfaces, and their interactions with each other.  The
classes, which are described in detail below, were chosen so as to
closely correspond to the physical components of the VDCs and
objects relevant to the analysis.

Once the class design was in place, the next step was writing a
prototype so that the program could successfully go through each
step in the analysis process.  Once this was completed, the more
challenging task of refining the analysis code began.  Initially, it was
sufficient to find results that were clearly wrong based on physical
reasons and to track down the causes of these errors.  Next, ESPACE
was used to analyze the same data as the C++ analyzer to look for
major differences in the results, which would indicate serious errors
in the C++ algorithm.  Finally, once there was sufficient agreement
between the ESPACE and C++ analyzer results, subtle differences
were investigated.

INTRODUCTION

Jefferson Lab is one of the few nuclear physics research fa-
cilities in the world to feature a continuous electron beam, which
allows unique opportunities to study subatomic structure.  The
largest of Jefferson Lab’s three experimental halls, Hall A, con-
tains two High Resolution Spectrometers (HRSs), which can be
used to make precision measurements of the momentum and ori-
gin of scattered charged particles.  Each of the HRSs has a set of
Vertical Drift Chambers (VDCs), which are used to detect charged
particle tracks in the focal plane of the spectrometer.  The software
used to analyze the data collected by the VDCs and extract mo-
mentum and position information of particles is discussed in this
paper.

Until now, Hall A has been using a software package called
ESPACE (Offermann, 1997) for track reconstruction.  ESPACE is
written in FORTRAN and, for various technical reasons, is diffi-
cult to maintain and to modify when changes in the detector con-
figuration are necessary.  As a result, an effort has been started to
duplicate the capabilities of ESPACE using object-oriented pro-
gramming.  This project is called the C++ Analyzer Project.  By
using object-oriented techniques, the analysis code is expected
to become more maintainable and flexible.  The C++ analyzer is
based on ROOT (Brun & Rademakers, 2001), an object-oriented
data analysis framework that has been developed at CERN since
1995 and that is specialized for physics applications.

The goal of this project is to determine the effect of small
differences between the C++ analyzer algorithm and the ESPACE
algorithm.  The C++ analyzer’s object-oriented design encourages
encapsulation of data and processing at the object level, while
ESPACE uses global processing and does not strongly distin-
guish separate components of the program.  Also, the C++ ana-
lyzer was designed to break the analysis into separate coarse and
fine tracking stages, rather than having a single stage, like ESPACE.
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Figure 1. The TRANSPORT coordinate system used to reconstruct
tracks in the C++ analysis code.

(Offerman, 1997) before producing a final result for the position
and direction of the tracks in the TRANSPORT (Brown et al., 1983)
coordinate system.  In this system, zT is the nominal direction of
the beam, xT is the direction the beam moves when its momentum
is increased an infinitesimal amount, and yT is the direction appro-
priate to make a right-handed coordinate system (Figure 1).  The
angle θT  is measured from the z-axis to the projection of the track
in the xz-plane, and the angle φT is measured from the z-axis to the
projection of the track in the yz-plane.  Straightforward trigonom-
etry gives the following equations, used to convert from the u-v
coordinate system (u, v, θu, θv) to TRANSPORT coordinates
(xT, yT, θT, φT):

DESCRIPTION OF VERTICAL DRIFT CHAMBERS

The VDCs are the most sophisticated detectors in the spec-
trometers, since they are designed to provide sub-millimeter track
position resolution.  The Hall A VDC packages consist of 4 gas-
filled wire chambers with 368 active wires each (Leathers, 1996;
Fissum, 2001).   The gas is a mixture of 50% argon and 50% ethane
by volume (62% and 38% by mass).  The wire chambers are ar-
ranged into an upper VDC and a lower VDC, each of which con-
sists of two wire planes whose wires are oriented at 90° to each
other.  The wire planes are tilted at 45° to the nominal beam direc-
tion such that an average of 5 wires receive a signal for each
event.  The convention used in this paper is that the direction
perpendicular to the wires in the first and third wire planes (the
“U” wire planes) is the u direction and the direction perpendicular
to the wires in the second and fourth wire planes (the “V” wire
planes) is the v direction.

When a particle passes through a wire chamber, it creates
positively charged ions and free electrons.  The wires are kept at
ground potential and negatively charged high voltage plates are
located above and below the wires, so that the electrons are at-
tracted to the wires (Liyanage, 1999; Wechsler, 1996).  As the
electrons move, they accelerate and collide with other gas mol-
ecules which ionizes them.  When this process occurs near the
large electric field gradients created by the wires, the result is an
avalanche of electrons that strikes the wire, inducing a signal (or
“hit”) on that wire.  The signal is then preamplified and discrimi-
nated before reaching a time-to-digital converter (TDC).  The TDCs
measure the time elapsed between the signal’s arrival and the
arrival of a common stop signal, triggered by the particle passing
through a scintillator panel.  As a result, the time resolution of the
TDCs, 0.5 ns, determines the time resolution of the VDCs.  The
time measured by the TDCs can be converted into the so-called
drift time, i.e. the time taken for the electrons freed by the charged
particles to drift to a wire.  The drift time information can be used
to determine the position and direction of the particle crossing
each wire plane.  This information, in turn, allows reconstruction
of the particle’s track.

TRACK RECONSTRUCTION ALGORITHM

General Track Reconstruction
Track reconstruction for both ESPACE and the C++ analyzer

involves the following basic steps.  First, hits on adjacent wires,
presumably caused by the same particle, are grouped into a “clus-
ter.”  Next, clusters found in each of the 4 wire planes are matched,
and the position at which the track crossed each wire plane is
determined.  To find this position, it is first necessary to apply an
algorithm to convert the drift times measured by the TDCs into the
drift distance of the electrons, where the drift distance is defined
to be the distance perpendicular to the wire plane from a wire to
the particle track.  To do this conversion accurately, corrections
for the angle of the track and the nonuniformity of the electric field
near the wires must be included (Wechsler, 1996).  Once drift dis-
tances have been calculated, a linear fit is used to determine where
the track crossed each wire plane, and the position and direction
of the particle when it crossed the focal plane are calculated.

The software uses the u-v and detector coordinate systems

(1)
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Figure 2. A particle track through a wire plane for a typical 5-wire event.
The value di is the drift distances for ith wire in the cluster to be hit, a is
the wire separation, and θ is the angle of the track with the wire plane.

Figure 3. This diagram shows the class ownership hierarchy.  The solid
arrows indicate classes that are members of other classes.  The dashed
arrows indicate references to objects of other classes.  For example, the
VDC class has a lower UV plane object, and hits contain a reference to
the wire on which they occurred.

In the previous equations, φu and φv are the angles that the u and
v axes make with the projection of the x direction into the
uv-plane, ρ is the angle between the detector plane and the zT axis,
zD is the distance from the focal plane of the spectrometer to the U
wire plane in which the track is being reconstructed, and θu and θv
are the angles that the track makes with the u and v axes.  In
addition, the TRANSPORT coordinates are then projected into
the TRANSPORT plane (zT = 0) using

where x’T and y’T are the projected coordinates of the track.

Object-oriented Track Reconstruction
This section describes in detail the C++ analyzer code to

convert the raw drift times into actual track information.  The first
stage is decoding the raw data for each event into hits in a specific
wire plane with their associated drift times and wire numbers.  The
second stage is the “coarse tracking” stage, in which a rough
estimate of the particle’s track is determined.  This stage is par-
ticularly useful for situations when a quick estimate of results may
be desirable.  The third stage is the “fine tracking” stage.  During
fine tracking, the position and direction of the particle track found
in the coarse tracking stage is refined.

During the coarse tracking, the hits are grouped into clusters
by identifying hits with no more than one wire separating them.
Once clusters have been found, clusters in the U wire plane are
paired with clusters in the V wire plane by finding clusters whose
hits with largest TDC values had drift times closest to each other.
Equation 1 is then used to obtain an estimate of where the track
found in the lower VDC would intersect with the upper VDC, and
vice versa, and these estimates are used to match the clusters in
the upper and lower VDCs.  Once clusters from the upper and
lower VDCs are matched, the global angles based on the cluster
positions in each plane are calculated.

During the fine tracking stage, a drift-time-to-drift-distance
(t-x) conversion algorithm is applied to the hits.  Changing the t-x
conversion algorithm can be accomplished very simply by using
class inheritance.  In principle, each wire could be associated with
a different algorithm.  The algorithm used in this analysis employs
a polynomial in the angle of the track to provide a correction to the

drift distance, where the angle of the track is obtained during the
final step of the coarse tracking.  Once the drift distance for each
hit is known, a linear fit is carried out to calculate the point where
the track crossed the wire plane (Figure 2).  Equations 1 and 2 are
applied again to match clusters from the lower and upper VDCs,
and a final calculation of the track is made.

CLASS DESCRIPTION

The classes in the C++ analyzer closely correspond to the
physical layout of the detector and to the logical structures that
arise from the analysis algorithm.  Figure 3 shows the class owner-
ship hierarchy.

• THaVDC:  The VDC class is the top class in the hierarchy,
representing the entire VDC package of a single spectrometer.  It
contains data applicable to the entire VDC and two UV plane ob-
jects.  It also contains functions responsible for the final calcula-
tion of track position and direction.

• THaVDCUVPlane:  The UV plane class represents the up-
per and lower VDCs in the VDC package.  Since each VDC has a U
and V plane, the UV plane class has two plane objects in addition
to other data specific to the VDCs.  The UV plane class also gen-
erates UV track objects.

• THaVDCPlane:  The plane class represents an individual
wire plane in the VDC package.  It contains an array of 368 wire
objects, an array of hits, and an array of clusters.  The size of the
hit and cluster arrays vary with the actual number of hits and
clusters.  The plane class is responsible for decoding raw data
into hits and finding clusters.

•  THaVDCUVTrack:  The UV track describes a track through
one of the UV planes.  UV tracks are able to search for a partner
track in the other UV plane and are considered successfully
matched when a track is its partner’s partner.

•  THaVDCCluster:  The cluster class describes a cluster of
hits.  It has an array of pointers to the hits that belong to it.  Also,

(2)
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Figure 5. Wire efficiency in the U1 wire plane, calculated by the C++
analyzer.

it can perform a linear fit on the hits in order to estimate the point
in the cluster where a track intercepts the wire plane and the angle
of that track.

•  THaVDCHit:  The hit class represents a single hit on one of
the wire planes.  It contains the TDC value associated with the hit,
the drift time of the electrons that caused the hit, and a pointer to
the wire on which the hit occurred.

•  THaVDCWire:  A wire class object represents each wire in
the VDC package.  Each wire object contains the wire number and
position of the wire in the detector.  Also, each wire has a pointer
to a time-to-distance conversion object for use by hits that oc-
curred on the wire.

•  THaVDCTimeToDistConv:  The time-to-distance conver-
sion class is a base class from which to derive actual t-x conver-
sion algorithms.  The main feature of the class is a function called
ConvertTimeToDist(), which takes a drift time and track
angle as arguments and returns a drift distance.

RESULTS

Three quantities that are of inherent interest for any VDC are
the drift time distribution, the wire efficiency, and the intrinsic
timing resolution.  The shape of the drift time spectrum for a wire
in a VDC is very distinctive.  There is a large peak for short drift
times due to the increased electric field intensity followed by a
long plateau (Wechsler, 1996).  Figure 4 shows a sample drift time
spectrum for a wire from the VDC package.  Other wires show very
similar results.  The efficiency of a wire can be determined by
checking whether or not it fires when the two wires adjacent to it
fire.  Thus, the wire efficiency is defined by ε = κ/(κ+λ), where κ is
the number of times a wire fires when its neighbors fire and λ is the
number of times it does not fire when its neighbors fire (Leathers,
1996).  Figure 5 shows the wire efficiency for data with an even
distribution of wire hits.  The time resolution measures how pre-
cisely the firing times of events may be determined.  The formula
for timing resolution for an event with n hits is ∆T = |(t1-t2)-(tn-tn-1)|,
where ti is the time of the ith hit (Fissum et al., 2000).  The time
resolution as determined by the C++ analyzer is shown in Figure 6.

As mentioned, the data used to compare the ESPACE and
C++ analyzer results were part of an optics study with a 9-foil
carbon target.  Results for both ESPACE and the C++ analyzer are
shown in Figures 7-10.  For this configuration, one expects a single
narrow peak in the xT direction because xT depends mostly on the
momentum of the scattered electrons, which is nearly constant
here (elastic scattering from carbon).  The clean peaks in the θT
spectrum arise because the sieve slit collimator selects well-de-
fined out-of-plane scattering angles at the target.  Both yT and φT
depend in a complex way on the scattering position along the
beam and the in-plane scattering angle at the target, and so one
expects spectra with some structure due to the sieve slit pattern
and target foils.  The visible peaks are smeared because the re-
sults are projected into the TRANSPORT plane, rather than being
in the focal plane of the spectrometer, and because the contribu-
tions from the target foils and the sieve slit are convoluted in
these one-dimensional spectra.  The mean xT’  value of the C++
analyzer results and ESPACE results differ by 2 mm, which is sig-
nificantly greater than the detector resolution of 0.1 mm.  Also, the
shape of the xT’ spectra, as seen in Figure 7, is somewhat different,

Figure 4. Drift time spectrum for wire 233 in the U1 wire plane,
calculated by the C++ analyzer.  Note that that there is a peak for short
drift times followed by a long plateau, as is expected.  The x-axis is in
seconds.

Figure 6. Time resolution for the U1 wire plane, calculated by the C++
analyzer.  The x-axis is in seconds.
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Figure 7. X’T spectrum from a 9-foil carbon target.  The blue results are
from the C++ analyzer and the red results are from ESPACE.  The x-axis
is in meters.

Figure 8: Y’T spectrum from a 9-foil carbon target.  The blue results are
from the C++ analyzer and the red results are from ESPACE.  The x-axis
is in meters.

Figure 9. θT spectrum from a 9-foil carbon target.  The blue results are
from the C++ analyzer and the red results are from ESPACE.  The x-axis
is tan(θT).

Figure 10. φT spectrum from a 9-foil carbon target.  The blue results are
from the C++ analyzer and the red results are from ESPACE.  The x-axis
is tan(φT).

especially on the right edge.  Since both algorithms are operating
on the exact same data, this difference is purely due to differences
in the algorithms.  The ESPACE results are likely to be more accu-
rate, since ESPACE has been in use for many years, but the best
way to determine the accuracy of the two systems would be to
test them on theoretical data, where the correct answer is known.
In the y T’ direction, 7 peaks are visible in the focal plane, but the
projection of these values into the TRANSPORT plane (Figure 8)
makes the peaks overlap significantly.  The shape of the C++
analyzer and ESPACE results are very similar, though there is a
small shift in the results, which may be due to the fact that xT’ and
y T’ are coupled (Equation 2).  The C++ analyzer results for θ T and
φ T agree very well with the ESPACE results (Figures 9 & 10).

CONCLUSION

The results show that there are indeed differences in the re-
sults from the C++ analyzer and ESPACE.  The differences are not
very large, but they are significant, since the resolution of the

detectors is on the order of 0.1 mm.  The reason for the differences
is purely due to differences in the algorithms, since both act on
the same set of data.  Hence, it is vital to track down the causes of
the differences and determine which algorithm is, in fact, more
accurate.  Since the ESPACE code has been in use for many years,
it is strongly expected to be more accurate at present.  The most
effective way to verify this would be to run both algorithms on
simulated data, where the correct answer is known, rather than on
experimental data.

One difference between the C++ analyzer algorithm and the
ESPACE algorithm is that the angles used for the t-x conversion
are computed differently.  ESPACE finds a cluster and then uses
characteristics of that cluster in order to compute the angle.  The
C++ analyzer uses the angle between pairs of clusters in the lower
and upper planes, which is obtained during the coarse tracking
phase.  This means that the C++ results should be more reliable.

A second difference is that clusters are matched in a different
order.  When handling multiple track events, ESPACE first pairs
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clusters from the U1 and U2 planes, then pairs clusters from the V1
and V2 planes, before finally matching sets of 4 clusters into tracks.
The C++ analyzer, however, matches U1 and V1 planes, and then
matches U2 and V2 planes, creating lower and upper UV tracks.
The lower and upper UV tracks are then paired in order to form
complete tracks.  The main difference is that ESPACE is able to
form a more precise fit of drift distances to wire positions, since it
has access to more points.  Although this difference is negligible
for low-data-rate experiments where less than 1% of events in-
volve multiple tracks, it could have an impact on high-data-rate
experiments.

Unfortunately, neither ESPACE nor the C++ analyzer is cur-
rently able to reliably process events with multiple particle tracks.
ESPACE’s current methods for handling multiple particle tracks
are known to be inefficient, but work is under way to improve
them.  The technique used by the C++ analyzer has not yet been
thoroughly tested, so it is impossible to say how efficient it is.
The main advantage of the C++ analyzer is that it is being de-
signed in a highly modular fashion, unlike ESPACE, which has
many complicated interdependencies between program units.  As
a result, interchanging algorithms and making changes to the code
when the detector configuration changes can be done more rap-
idly with the new C++ analyzer.

At present, there is still a great deal of work that must be done
to compare the performance of the two algorithms.  It is important
to determine which one is actually more accurate, and to track
down the differences in the algorithms leading to the current dif-
ferences.  The speed of the algorithms has not been rigorously
tested, though they are roughly equal.  A thorough test of speed
should occur after the differences in the results have been ac-
counted for and the C++ analyzer has been optimized.  Since the
ultimate goal of the C++ analyzer is to replace ESPACE, more test-
ing is currently underway.
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